Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora.

نویسنده

  • Qingmin Han
چکیده

Hydraulic limitations associated with increasing tree height result in reduced foliar stomatal conductance (g(s)) and light-saturated photosynthesis (A(max)). However, it is unclear whether the decline in A(max) is attributable to height-related modifications in foliar nitrogen concentration (N), to mesophyll conductance (g(m)) or to biochemical capacity for photosynthesis (maximum rate of carboxylation, V(cmax)). Simultaneous measurements of gas exchange and chlorophyll fluorescence were made to determine g(m) and V(cmax) in four height classes of Pinus densiflora Sieb. & Zucc. trees. As the average height of growing trees increased from 3.1 to 13.7 m, g(m) decreased from 0.250 to 0.107 mol m(-2) s(-1), and the CO(2) concentration from the intercellular space (C(i)) to the site of carboxylation (C(c)) decreased by an average of 74 µmol mol(-1). Furthermore, V(cmax) estimated from C(c) increased from 68.4 to 112.0 µmol m(-2) s(-1) with the increase in height, but did not change when it was calculated based on C(i). In contrast, A(max) decreased from 14.17 to 10.73 µmol m(-2) s(-1). Leaf dry mass per unit area (LMA) increased significantly with tree height as well as N on both a dry mass and an area basis. All of these parameters were significantly correlated with tree height. In addition, g(m) was closely correlated with LMA and g(s), indicating that increased diffusive resistance for CO(2) may be the inevitable consequence of morphological adaptation. Foliar N per unit area was positively correlated with V(cmax) based on C(c) but negatively with A(max), suggesting that enhancement of photosynthetic capacity is achieved by allocating more N to foliage in order to minimize the declines in A(max). Increases in the N cost associated with carbon gain because of the limited water available to taller trees lead to a trade-off between water use efficiency and photosynthetic nitrogen use efficiency. In conclusion, the height-related decrease in photosynthetic performance appears to result mainly from diffusive resistances rather than biochemical limitations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photosynthesis at an extreme end of the leaf trait spectrum: how does it relate to high leaf dry mass per area and associated structural parameters?

Leaf dry mass per area (LMA) is a composite parameter relating to a suite of structural traits that have the potential to influence photosynthesis. However, the extent to which each of these traits contributes to variation in LMA and photosynthetic rates is not well understood, especially at the high end of the LMA spectrum. In this study, the genus Banksia (Proteaceae) was chosen as a model gr...

متن کامل

Leaf-age effects on seasonal variability in photosynthetic parameters and its relationships with leaf mass per area and leaf nitrogen concentration within a Pinus densiflora crown.

In the temperate zone of Japan, Pinus densiflora Sieb. et Zucc. bears needles of up to three age classes in the upper crown and up to five age classes in the lower crown. To elucidate the effects of leaf age on photosynthetic parameters and its relationships with leaf mass per unit area (LMA) and leaf nitrogen (N(l)) concentration on an area (N(a)) and mass (N(m)) basis, we measured seasonal va...

متن کامل

Plant size, not age, regulates growth and gas exchange in grafted Scots pine trees.

We studied the effect of scion donor-tree age on the physiology and growth of 6- to 7-year-old grafted Scots pine (Pinus sylvestris L.) trees (4 and 5 years after grafting). Physiological measurements included photosynthethetic rate, stomatal conductance, transpiration, whole plant hydraulic conductance, needle nitrogen concentration and carbon isotope composition. Growth measurements included ...

متن کامل

Photosynthesis, Nitrogen Metabolism and Antioxidant Defense System in B-Deficient tea (Camellia sinensis (L.) O. Kuntze) Plants

Response of tea plants to B deficiency was studied in hydroponic medium under environmentally controlled conditions. Plants height, number of leaves and dry matter production of shoot and root were significantly decreased by B deficiency. Concentration of chlorophyll, carotenoids, anthocyanins and flavonoids was not affected by B deficiency in the young leaf, while a significant reduction of Ch...

متن کامل

Effects of Nitrate Application on Amaranthus powellii Wats. : III. Optimal Allocation of Leaf Nitrogen for Photosynthesis and Stomatal Conductance.

Optimal allocation of leaf nitrogen maximizes daily CO(2) assimilation for a given leaf nitrogen concentration. According to the hypothesis of optimization, this condition occurs when the partial derivative of assimilation rate with respect to leaf nitrogen concentration is constant. This hypothesis predicts a linear increase of assimilation rate with leaf nitrogen concentration under constant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 31 9  شماره 

صفحات  -

تاریخ انتشار 2011